1.6 Enrichment and Extension

Radian Measures of Complementary and Supplementary Angles

A *radian* is a standard unit of measure used to measure angles. The conversion from degrees to radians is $180^\circ = \pi$ radians.

Example 1: Convert the sum of complementary and supplementary angles into radians.

Solution: $90^{\circ} \cdot \frac{\pi \text{ radians}}{180^{\circ}} = \frac{\pi}{2}$ radians $180^{\circ} \cdot \frac{\pi \text{ radians}}{180^{\circ}} = \pi \text{ radians}$ Complementary angles sum to $\frac{\pi}{2}$ radians. Example 2: Determine whether $\frac{3\pi}{8}$ and $\frac{\pi}{4}$ are *complementary*, *supplementary*, or *neither*. Solution: $\frac{\pi}{4} \cdot \left(\frac{2}{2}\right) = \frac{2\pi}{8}$ Multiply by an identity to get the LCD. $\frac{2\pi}{8} + \frac{3\pi}{8} = \frac{5\pi}{8}$ Add the two measurements. The sum of $\frac{5\pi}{8}$ does not equal $\frac{\pi}{2}$ or π , so the final answer is *neither*. In Exercises 1–6, determine whether the two angles are *complementary*,

1.	$\frac{3\pi}{7}, \frac{4\pi}{7}$	2.	$\frac{\pi}{4}, \frac{\pi}{4}$	3.	$\frac{5\pi}{18}, \frac{5\pi}{9}$
4.	$\frac{\pi}{8}, \frac{7\pi}{8}$	5.	$\frac{\pi}{3}, \frac{\pi}{4}$	6.	$\frac{6\pi}{15}, \frac{\pi}{10}$

In Exercises 7–12, find the angle complementary and supplementary to the given angle, if possible.

7.
$$\frac{12\pi}{15}$$
 8. $\frac{23\pi}{42}$ 9. $\frac{3\pi}{17}$

10.
$$\frac{2\pi}{5}$$
 11. $\frac{17\pi}{42}$ **12.** $\frac{7\pi}{8}$

supplementary, or neither.

1.6

Extra Practice

In Exercises 1–3, use the diagrams.

- 1. Name a pair of adjacent complementary angles.
- 2. Name a pair of nonadjacent complementary angles.
- **3.** Name a pair of nonadjacent supplementary angles.

In Exercises 4 and 5, find the angle measure.

- **4.** $\angle 1$ is a complement of $\angle 2$, and $m\angle 2 = 71^{\circ}$. Find $m\angle 1$.
- 5. $\angle 3$ is a supplement of $\angle 4$, and $m \angle 4 = 26.7^{\circ}$. Find $m \angle 3$.

In Exercises 6 and 7, find the measure of each angle.

- 6. $\angle ABC$ and $\angle CBD$ are supplementary angles, $m \angle ABC = 7x^{\circ}$ and $m \angle CBD = 8x^{\circ}$.
- 7. $\angle WXY$ and $\angle YXZ$ are complementary angles, $m \angle WXY = (2x + 5)^\circ$, and $m \angle YXZ = (8x - 5)^\circ$.

In Exercises 8–11, use the diagram.

- **8.** Identify the linear pair(s) that include $\angle 2$.
- **9.** Identify the linear pair(s) that include $\angle 8$.
- **10.** Are $\angle 6$ and $\angle 8$ vertical angles? Explain your reasoning.
- **11.** Are $\angle 7$ and $\angle 9$ vertical angles? Explain your reasoning.

In Exercises 12–14, write and solve an algebraic equation to find the measure of each angle described.

- **12.** The measure of an angle is 9° more than twice its complement.
- **13.** Two angles form a linear pair. The measure of one angle is four times the measure of the other angle.
- 14. Two angles form a linear pair. The measure of one angle is 51° more than $\frac{1}{2}$ the measure of the other angle.

In Exercises 15 and 16, tell whether the statement is *always*, *sometimes*, or *never* true. Explain your reasoning.

- **15.** The sum of the measures of a linear pair of angles is 90° .
- **16.** The sum of the measures of a pair of vertical angles is 180° .
- 40 Geometry Resources by Chapter

